A Systems Biology Approach for the Analysis of Mn Sensitivity and Tolerance in the tropical Legume Cowpea (Vigna unguiculata L.)

Hendrik Fuhrers1, Joachim Kopka2, Alain Van Dorsseelaer1, Hans-Peter Braun2, & Walter J. Horst1

1 Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
2 Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
3 Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, ULP, CNRS, UMR7178 ; 25 rue Becquerel, 67 087 Strasbourg, France

Institute of Plant Genetics, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
fuehrs@pflern.uni-hannover.de

Introduction: Excess manganese (Mn) supply leads to enhanced apoplastic peroxidase (POD) activities (Fecht-Christoffers et al., 2006). For other plant species (González and Lynch, 1998; Houtz et al., 1988; Nable et al., 1988) changes in the photosynthetic performance have been described. Silicon supply (Si) delays Mn toxicity development in sensitive cultivars (Iwasaki et al., 2002a, b; Rogalla and Romheld, 2002). This work describes a systems biology approach applied to the apoplast and symplast to unravel mechanisms either leading to Mn toxicity development or Mn tolerance. Also, the alleviative effect of Si was investigated.

Materials & Methods: After 14 d of preculture with or without Si cowpea plants received 50 µM Mn (+Mn) for 3 d or 0.2 µM Mn (-Mn) continuously. BN-PAGE of Apoplastic Washing Fluid (AWF) proteins and subsequent guaiacol-POD activity staining was done as described in Führs et al. (2009a). IEF/SDS-PAGE and BN/SDS-PAGE was done according to Führs et al. (2008). GC-MS-based metabolite profiling including non-supervised Independent Component Analysis (at http://metagenealyse.mpimp-golm.mpg.de) was carried out according to Führs et al. (2009b).

1. In the apoplast there are genotypic differences in the POD isoenzyme profile between the Mn-tolerant cowpea cultivar TVu 1987 (t) and the Mn-sensitive cultivar TVu 91 (s) (A). In TVu 91 the isoenzyme profile is modulated by Mn and Si supply (B).

2. In the symplast at high Mn supply, seven proteins changed in abundance in the Mn-sensitive cv. TVu 91 (s), whereas only one protein was upregulated in the Mn-tolerant cv. TVu 1987 (t).

3. BN/SDS-PAGE revealed a state I – state II transition of photosynthesis particularly in the Mn-sensitive cultivar TVu 91 (s).

4. An Independent Component Analysis (ICA) shows that the total, apoplastic and non-polar apoplastic metabolome differs between the genotypes and that it is affected by excess Mn and Si supply. The contribution of each experimental factor on metabolomic changes is quantifiable.

Conclusion: In the apoplast the higher abundance of peroxidase isoenzymes in association with a higher response of the isoenzyme profile to toxic Mn supply may explain the apoplastic Mn-sensitivity of TVu 91 compared with TVu 1987. Silicon supply is able to reduce the Mn effect on the isoenzyme profile. Also, TVu 91 responded much more on the total proteome level to toxic Mn supply than TVu 1987. Proteins of Mn-induced changed abundance mostly belonged to photosynthesis relevant processes. Indeed, also the photosynthetic protein complexes showed a shift from state I to state II photosynthesis. These state transitions induce cyclic electron transport with increased ATP production at the cost/binding of reducing equivalents (NADPH, ferredoxin). Changed photosynthesis also affects the primary and secondary metabolism in the symplast and apoplast as revealed by ICA of the metabolite profiling results. The alleviative effect of Si seems to be a constitutive effect which is then masked by excess Mn-induced processes explaining that Si only delays but not prevents Mn toxicity.


Fig.1: IEF/SDS-PAGE of the bulk-leaf proteome of two cowpea cultivars differing in Mn tolerance after 3 d of elevated (50 µM Mn) supply. Spots marked with arrows and numbers were statistically evaluated, sequenced and identified.

Fig.3: BN/SDS-PAGE of chloroplastic protein complexes. Arrows indicate subunits used for quantification.

Fig.3 ICA plot of the (A) bulk-leaves metabolites, of the apoplastic AWFH20 and AWFNaCl metabolites, and of non-polar apoplastic metabolites extracted from the AWFH20 and AWFNaCl of the second oldest trifoliate leaves of TVu 91 and TVu 1987 as affected by Mn and Si treatments.

Fig.3 IC01 (infiltration solution)